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Heat flux and shear rate in turbulent convection
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One interesting feature of hard turbulence, a scaling regime in turbulent convection, is the presence of a
large-scale mean circulating flow. Its effect on heat flux was studied by Shraiman and[Biggsa Rev. A42,
3650(1990], who approximated it as a shear flow near the boundaries. A constant shear rate was considered,
which, in effect, assumes that heat is carried mainly by the mean flow. Experiments indicate, however, that a
significant portion of heat is carried by the thermal plumes. In this paper, an analysis for a position-dependent
shear rate is presented. The relation between the heat flux and the shear rate is found to depend crucially on the
shape of the temperature profile. For the general profile that remains the same throughout a range of Rayleigh
numbers, the relation is different from the previous result and agrees better with some recent experimental
observations[S1063-651X%97)05201-X]

PACS numbds): 47.27.Te, 47.27.Nz

Experimental studies of Rayleigh-Bard convection have conduction. Using the vertical temperature gradient, one can
revealed a scaling state, known as hard turbulence, whictiefine a thermal boundary layer thickness
covers a wide range of Rayleigh number Ra, fron§ 10

10*® [1]. In this turbulent regime, the measured quantities, Al2

e.g., heat flux and the size of local temperature fluctuations, AMx)= [T 2
all exhibit a power-law dependence on Ra. Particularly inter- ﬂ

esting is the observed scaling exponent of the heat flux being 9z|,_,

different from the “classical” value that one would obtain
from marginal stability argument]. Another unexpected
feature is the presence of a large-scale circulating flow th

spans the whole experimental c¢8]. The mean velocity selt number Nu, which is the actual heat flux normalized by

also scales with Ra. . .
Hard turbulence is believed to be described by the foIIOW_that transported if there were only conduction. We can also

ing equationg4] of an incompressible fluid: define a pointwise Nusselt number jas

across which half the temperature difference drops. The co-
a?rdinates are defined with=0 at the bottom plate.
Heat flux transferred across the cell is given by the Nus-
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wherek is the thermal conductivity of the fluid and is the
.. cross-sectional area of the cell. It has been found experimen-
V-u=0, (19 tally [5] that Ny,(x) has the same scaling as Nu wheis at
R the middle of the cell. Since we are interested only in scaling
whereu is the velocity field,p the pressure divided by den- properties in this paper, we shall estimate Nu by,Nat
sity, T the temperature field, and the unit vector in the x=L/2, which is in the middle of an aspect-ratio-one cell.
vertical direction. In Eq.(1), g is the acceleration due to The problem of understanding the scaling of Nu thus be-
gravity; a, v, and are, respectively, the volume expansion comes a question of how thick the thermal boundary layer
coefficient, kinematic viscosity, and thermal diffusivity of should be.
the fluid. There are two dimensionless parameters: Ra A classical model[2] argues that the boundary layer
=agAL3 vk, whereA is the applied temperature difference maintains its thickness such that it is marginally stable
andL is the height of the cell, and the Prandtl number Pr,against convection. This idea implies that the Rayleigh num-
which is the ratiov/ k. ber of the boundary layer Ra= agAX3/2v« would be at the
When convective turbulence occurs, the center is statistifixed critical value for the onset of convection. This leads to
cally isothermal as the fluctuating velocity field smooths outh\/L~Ra 3, which translates to Nu-Ra®. As pointed out
any temperature gradient. However, the velocity field vanby others[6], this result does not, however, agree with the
ishes at the top and bottom plates because of the no-sligxperimental observation NuR&285-0-004 [1], Several
boundary condition, so heat can be transported only by conmodels have been proposed to explain this nonclassical scal-
duction there. As a result, the temperature difference concerirg in Nu [6-8].
trates in two regions, i.e., two thin thermal boundary layers In Ref.[6], it was assumed that there are essentially three
are developed, across which heat is transported mainly bgfifferent regions inside the celli) a well-mixed central re-
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gion, (ii) the top and bottom boundary layers, afiid) an  with respect tox. Since the vertical velocity, is not ne-

in-between plumes-dominated mixing layer. Different termsglected, heat carried by the thermal pluri&§] is effectively

in Eq. (18 were then balanced in an order-of-magnitudetaken into account. The time-independent heat equation

fashion in the various regions. This analysis yielded a scaling

in Nu, Nu~R&"Pr 7, which agrees well with the experi- oT Yy ()2 dT  PT T

mental result. However, the model implicitly assumed that Y2 — T TRtk ()

heat flux is mainly transferred convectively through the cen-

tral region, which is not what has been observed experimeng yhen solved for a class df(x,z), which has a self-similar

tally [5] and numericallyf9]. form
The existence of a large-scale mean circulating flow was

found in further experimental measurements. Such a large-

scale flow generates velocity boundary layers at the walls. Its M: —¢ i) (8)
effect on the heat flux was studied by Shraiman and Siggia, A A(X)
who analyzed the interaction between the thermal and veloc-
ity boundary layerg8]. They approximated the large-scale and satisfies
flow by a shear near the boundaries and considered the shear
1 1
rate y to be constant. They found £0)=0, ()= 5 £9(0)= = )
yL2\ 13
Nu~ —) : 4 . I ,
K The notationz™ denotes theth derivative of; with respect

) B » to its argument. Conditions in Eq9) ensure, respectively,
Using empirically verified results for the shear rate of a tur_T(XrZ):Tbot at z=0, whereT,,, is the temperature of the
bulent velocity boundary layer and the kinetic-energy dissijower plate, half of the temperature difference drops across
pation in turbulent shear flows in pipes or channels, theyne pottom boundary layer, and consistency with @y. The
again reproduced the observed scaling in Nu. _function ¢ is the normalized temperature profile whose ver-

Several experimental studies of the thermal and velocityjcq distance is measured in units of the thermal boundary
boundary layerg5,10-13 have been performed and, as a|yer thickness\ (x). This class of solutions is considered
result, new questions are raised. Firstly, experiments indical§acayse numerical simulations have found that the average
that the observed 2/7 scaling in Nu starts already at some %mperature profile is well approximated by such a form
when the velocity boundary layer is not yet turbul¢h®]. [15]. The temperature profile obtained in RE8] also be-
This is puzzling as the shear rate and the kinetic-energy di%ngs to such class.
sipation should be quite different for a laminar velocity Substituting Eq.(8) into Eq. (7) results in an ordinary
boundary layer. Second, considering a constant shear rafgerential equation fo(p):
implicitly assumes that the heat flux is mainly carried by the
large-scale mean flow, but experimental observation showed [YOON2(X)]’
that a significant portion of heat is carried by the thermal—p2;()(p)

plumes[5]. Finally, and more importantly, E44) cannot be 2K\ (X)
verified by some recent direct velocity measurememnf, 21N () T2= N (ON(X)
which found instead = p§<1>(p)[ 5 ]
A (X)
’yol_2 N 2 1
— Rf66:0.01 (5) 242) (x) 2
K TP oo | TP (10
2\ 0.44
Nu~( Yol ) (6) wherep=2z/X\(x). A solution for Eq.(10) exists if and only
K ' if the functions ofx in all the terms are proportional to each

other[17]. This implies
wherey, is the shear rate measured near the bottom plate in
the middle of the cell. Chillat al.[14] reported experimen- N[ YOON(X)T’
tal evidence that Eq4) is correct, but no direct shear rate N (X) =K, 5
measurements were made in their work. Wit reported K

that Eq. (4) is consistent with the data obtained in two- )
dimensional numerical simulations. where K and A are constants independent »f but may

In this paper, an analysis for nonuniform shear rate isdepengl on Ra. A constant would lead to the conclusion
presented. The shear ragéx) is now a function of position. that {#(p)=0, which is not allowed. With Eq(11), Eq.
The relation between the shear rate and the heat flux is fourid® becomes
to depend crucially on the shape of the temperature profile.

For the general temperature profile that remains the same —(2K?p+Ap?) M (p)=(1+K?p?) {2 (p),
throughout a range of Ra, the relation is different from Eq.
(4) and agrees better with Ep). whose solution depends on whether or Koand A vanish.

The horizontal velocity is taken to be,= y(x)z. Then We first consider the case when bétrandA are nonzero
u,=—v'(x)z%/2, where the prime indicates a derivative and find

=A, (11)
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whereA andK are related by/(«)=1/2. Thus the normal-
ized temperature profile is determined up to one constant,
which we take to beK for definiteness. Moreover,
K?=—¢®)(0) and A=—¢*)(0). Equation (11) leads to

M (X) =Kx+c, wherec is a constant, and

L2 B8A(K . . .
el ( )Nuz(ln Nu). (13 0.0 20 40 6.0 8.0
K p=2/Mx)

The constanK might be a function of Ra. However, if the FIG. 1. Normalized temperature profilg(p) for the three
shape of the normalized temperature profile near the middlgifferent cases:(i) K=1.00587 andA=1.017 71, (i) K=0
of the cell remains the same over a certain range of Ra, the~n=2.136 22, andiii) A=0 K= 7/2.

K is a constant independent of Ra in this range. Equation

(13) then implies thatyoL %/ x scales like N&(InNu) in this  Ra>1(f that coincide with each other. A comparison of this
range of Ra. There is numerical eviderjd®] that the nor-  common profile with Fig. 1 suggests that it corresponds to
malized temperature profile near the middle region of the celk -0 andA#0. If the normalized temperature profile does
has the same shape for the range of Ra studied. remain the same over a substantial range of Ra, we have Eq.
Next, consider the cad¢=0 butA#0. We have (13) with A(K)/K being constant over the same range. Since
1 (At Nu~ R&'7, this impliesy,L?/ k~R&"In Ra. If a straight line
Lp)= _113J pe—q3/3dq, A=2.13622. (14) s fitted to a log-log plot ofyoL? x versus Ra, the slope
2A™"Jo obtained will depend on the range of Ra. An example of such
_ o a plot for 1#<Ra<10' (the range of Ra covered in the
Note that Eq.(14) is the K—0 limit of Eq. (12) and re-  experiment in Ref[13]) is shown in Fig. 2. The exponent so
sembles the temperature profile obtained by Shraiman anghtained is 0.62, which is in better agreement with the ex-
Siggia[8]. Moreover, perimental result of 0.660.01[13]. It is thus interesting to
L2 check whether the normalized temperature profile remains
Yo ~16A N3, (15)  the same over the range of Ra covered and whether the pro-
K file corresponds t&K #0 andA#0.
| have presented an analysis of the interaction of the ther-
mal and velocity boundary layers for the general case of
nonuniform shear. The relation between the heat flux and
1 shear rate depends on the shape of the temperature profile.
L(p)= Rarctapr), (16) However, the same 2/7 Nu scaling has been observed irre-
spective of whether the shear rate scales liké Ni5] or not
[13]. This implies that the cause of the nonclassical scaling

which agrees with the predictidiEq. (4)] of Ref. [8].
Finally, for A=0 butK+0,

with K=#/2 and

L2 100
" _geN (17)

which implies that the shear rate scales like?Niuthe con- _
stantB does not depend on Ra. /

Hence the relation between the shear rate and the heat flux
depends crucially on the normalized temperature profile ¥ —

Z(p). In Fig. 1 we plot{(p) for the three casedi) K~A = '0f /
~1, (i) K=0 and A=2.13622, and(ii) A=0 and

K= /2. The profile forA=0 is much broader than the pro-
files reported in the literatufel 2,15, implying that the rela-
tion between the shear rate and the heat flux would not be
given by Eq.(17).

The observation of,L?/ k~Nu® in two-dimensional nu- o
merical simulationg15] suggests that the normalized tem- 10
perature profiles correspond Ko~0. This is supported by a
good resemblance of Fig. 1 and Fig.(dbin Ref. [15] and FIG. 2. Plot of yoL?%/« versus Ra using Eq(13) with Nu
by a direct estimate of the slope »{x) for 0<x<L/2 from  ~R&” andA(K)/K taken to be constant. A good straight line can
Fig. 16d) in [15]. On the other hand, Fig. 3 in Refl2]  be fitted in the log-log plot and the slope obtained is 0.62, which
shows two experimental normalized temperature profiles foagrees better with Eq5). C is an arbitrary constant.
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of Nu is more general than that given in RE] and a full ~ with B.l. Shraiman while we were at the Aspen Center for
understanding remains to be obtained. Physics. This work was partially supported by the Institute of
d Mathematical Sciences at the Chinese University of Hong
Kong and by the Hong Kong Research Grants Council
(Grant No. 458/95P
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