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Heat flux and shear rate in turbulent convection
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One interesting feature of hard turbulence, a scaling regime in turbulent convection, is the presence of a
large-scale mean circulating flow. Its effect on heat flux was studied by Shraiman and Siggia@Phys. Rev. A42,
3650~1990!#, who approximated it as a shear flow near the boundaries. A constant shear rate was considered,
which, in effect, assumes that heat is carried mainly by the mean flow. Experiments indicate, however, that a
significant portion of heat is carried by the thermal plumes. In this paper, an analysis for a position-dependent
shear rate is presented. The relation between the heat flux and the shear rate is found to depend crucially on the
shape of the temperature profile. For the general profile that remains the same throughout a range of Rayleigh
numbers, the relation is different from the previous result and agrees better with some recent experimental
observations.@S1063-651X~97!05201-X#

PACS number~s!: 47.27.Te, 47.27.Nz
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Experimental studies of Rayleigh-Be´nard convection have
revealed a scaling state, known as hard turbulence, w
covers a wide range of Rayleigh number Ra, from 108 to
1015 @1#. In this turbulent regime, the measured quantiti
e.g., heat flux and the size of local temperature fluctuatio
all exhibit a power-law dependence on Ra. Particularly int
esting is the observed scaling exponent of the heat flux b
different from the ‘‘classical’’ value that one would obta
from marginal stability arguments@2#. Another unexpected
feature is the presence of a large-scale circulating flow
spans the whole experimental cell@3#. The mean velocity
also scales with Ra.

Hard turbulence is believed to be described by the follo
ing equations@4# of an incompressible fluid:

]uW

]t
1uW •¹W uW 52¹W p1n¹2uW 1gaTẑ, ~1a!

]T

]t
1uW •¹W T5k¹2T, ~1b!

¹W •uW 50, ~1c!

whereuW is the velocity field,p the pressure divided by den
sity, T the temperature field, andẑ the unit vector in the
vertical direction. In Eq.~1!, g is the acceleration due t
gravity; a, n, andk are, respectively, the volume expansi
coefficient, kinematic viscosity, and thermal diffusivity o
the fluid. There are two dimensionless parameters:
5agDL3/nk, whereD is the applied temperature differenc
andL is the height of the cell, and the Prandtl number
which is the ration/k.

When convective turbulence occurs, the center is stat
cally isothermal as the fluctuating velocity field smooths o
any temperature gradient. However, the velocity field v
ishes at the top and bottom plates because of the no
boundary condition, so heat can be transported only by c
duction there. As a result, the temperature difference con
trates in two regions, i.e., two thin thermal boundary lay
are developed, across which heat is transported mainly
551063-651X/97/55~1!/1189~4!/$10.00
ch

,
s,
r-
ng

at

-

a

,

ti-
t
-
lip
n-
n-
s
by

conduction. Using the vertical temperature gradient, one
define a thermal boundary layer thicknessl,

l~x![
D/2

Z ]T
]z U

z50

Z , ~2!

across which half the temperature difference drops. The
ordinates are defined withz50 at the bottom plate.

Heat flux transferred across the cell is given by the N
selt number Nu, which is the actual heat flux normalized
that transported if there were only conduction. We can a
define a pointwise Nusselt number Nupt as

Nupt~x![

ksZ ]T
]z U

z50

Z
ks

D

L

5
L

2l~x!
, ~3!

wherek is the thermal conductivity of the fluid ands is the
cross-sectional area of the cell. It has been found experim
tally @5# that Nupt(x) has the same scaling as Nu whenx is at
the middle of the cell. Since we are interested only in scal
properties in this paper, we shall estimate Nu by Nupt at
x5L/2, which is in the middle of an aspect-ratio-one ce
The problem of understanding the scaling of Nu thus
comes a question of how thick the thermal boundary la
should be.

A classical model@2# argues that the boundary laye
maintains its thickness such that it is marginally sta
against convection. This idea implies that the Rayleigh nu
ber of the boundary layer Ral5agDl3/2nk would be at the
fixed critical value for the onset of convection. This leads
l/L;Ra21/3, which translates to Nu;Ra1/3. As pointed out
by others@6#, this result does not, however, agree with t
experimental observation Nu;Ra0.28560.004 @1#. Several
models have been proposed to explain this nonclassical s
ing in Nu @6–8#.

In Ref. @6#, it was assumed that there are essentially th
different regions inside the cell:~i! a well-mixed central re-
1189 © 1997 The American Physical Society



m
de
lin
-
ha
en
e

a
rg
. I
gi
lo
le
h

ur
s
e

cit
a
ca
R

di
ity
r
he
w
a

e
-
te

o-

i

u
fil
am
q

e

,

oss

er-
ary
d
rage
rm

h

1190 55BRIEF REPORTS
gion, ~ii ! the top and bottom boundary layers, and~iii ! an
in-between plumes-dominated mixing layer. Different ter
in Eq. ~1a! were then balanced in an order-of-magnitu
fashion in the various regions. This analysis yielded a sca
in Nu, Nu;Ra2/7Pr21/7, which agrees well with the experi
mental result. However, the model implicitly assumed t
heat flux is mainly transferred convectively through the c
tral region, which is not what has been observed experim
tally @5# and numerically@9#.

The existence of a large-scale mean circulating flow w
found in further experimental measurements. Such a la
scale flow generates velocity boundary layers at the walls
effect on the heat flux was studied by Shraiman and Sig
who analyzed the interaction between the thermal and ve
ity boundary layers@8#. They approximated the large-sca
flow by a shear near the boundaries and considered the s
rateg to be constant. They found

Nu;S gL2

k D 1/3. ~4!

Using empirically verified results for the shear rate of a t
bulent velocity boundary layer and the kinetic-energy dis
pation in turbulent shear flows in pipes or channels, th
again reproduced the observed scaling in Nu.

Several experimental studies of the thermal and velo
boundary layers@5,10–12# have been performed and, as
result, new questions are raised. Firstly, experiments indi
that the observed 2/7 scaling in Nu starts already at some
when the velocity boundary layer is not yet turbulent@12#.
This is puzzling as the shear rate and the kinetic-energy
sipation should be quite different for a laminar veloc
boundary layer. Second, considering a constant shear
implicitly assumes that the heat flux is mainly carried by t
large-scale mean flow, but experimental observation sho
that a significant portion of heat is carried by the therm
plumes@5#. Finally, and more importantly, Eq.~4! cannot be
verified by some recent direct velocity measurements@13#,
which found instead

g0L
2

k
;Ra0.6660.01, ~5!

Nu;S g0L
2

k D 0.44, ~6!

whereg0 is the shear rate measured near the bottom plat
the middle of the cell. Chillaet al. @14# reported experimen
tal evidence that Eq.~4! is correct, but no direct shear ra
measurements were made in their work. Werne@15# reported
that Eq. ~4! is consistent with the data obtained in tw
dimensional numerical simulations.

In this paper, an analysis for nonuniform shear rate
presented. The shear rateg(x) is now a function of position.
The relation between the shear rate and the heat flux is fo
to depend crucially on the shape of the temperature pro
For the general temperature profile that remains the s
throughout a range of Ra, the relation is different from E
~4! and agrees better with Eq.~6!.

The horizontal velocity is taken to beux5g(x)z. Then
uz52g8(x)z2/2, where the prime indicates a derivativ
s
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with respect tox. Since the vertical velocityuz is not ne-
glected, heat carried by the thermal plumes@16# is effectively
taken into account. The time-independent heat equation

g~x!z
]T

]x
2

g8~x!z2

2

]T

]z
5k

]2T

]x2
1k

]2T

]z2
~7!

is then solved for a class ofT(x,z), which has a self-similar
form

T~x,z!2Tbot
D

52zS z

l~x! D ~8!

and satisfies

z~0!50, z~`!5
1

2
, z~1!~0!5

1

2
. ~9!

The notationz (n) denotes thenth derivative ofz with respect
to its argument. Conditions in Eq.~9! ensure, respectively
T(x,z)5Tbot at z50, whereTbot is the temperature of the
lower plate, half of the temperature difference drops acr
the bottom boundary layer, and consistency with Eq.~2!. The
function z is the normalized temperature profile whose v
tical distance is measured in units of the thermal bound
layer thicknessl(x). This class of solutions is considere
because numerical simulations have found that the ave
temperature profile is well approximated by such a fo
@15#. The temperature profile obtained in Ref.@8# also be-
longs to such class.

Substituting Eq.~8! into Eq. ~7! results in an ordinary
differential equation forz(p):

2p2z~1!~p!
@g~x!l2~x!#8

2kl~x!

5pz~1!~p!H 2@l8~x!#22l9~x!l~x!

l2~x! J
1p2z~2!~p!Fl8~x!

l~x! G21z~2!~p!
1

l2~x!
, ~10!

wherep5z/l(x). A solution for Eq.~10! exists if and only
if the functions ofx in all the terms are proportional to eac
other @17#. This implies

l8~x!5K,
l~x!@g~x!l2~x!#8

2k
5A, ~11!

where K and A are constants independent ofx, but may
depend on Ra. A constantg would lead to the conclusion
that z (2)(p)50, which is not allowed. With Eq.~11!, Eq.
~10! becomes

2~2K2p1Ap2!z~1!~p!5~11K2p2!z~2!~p!,

whose solution depends on whether or notK andA vanish.
We first consider the case when bothK andA are nonzero

and find
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z~p!5
1

2E0
p
expH 2

A

K3@Kq2arctan~Kq!#J
11K2q2

dq, ~12!

whereA andK are related byz(`)51/2. Thus the normal-
ized temperature profile is determined up to one const
which we take to beK for definiteness. Moreover
K252z (3)(0) and A52z (4)(0). Equation ~11! leads to
l(x)5Kx1c, wherec is a constant, and

g0L
2

k
;
8A~K !

K
Nu2~ lnNu!. ~13!

The constantK might be a function of Ra. However, if th
shape of the normalized temperature profile near the mid
of the cell remains the same over a certain range of Ra,
K is a constant independent of Ra in this range. Equa
~13! then implies thatg0L

2/k scales like Nu2(lnNu) in this
range of Ra. There is numerical evidence@15# that the nor-
malized temperature profile near the middle region of the
has the same shape for the range of Ra studied.

Next, consider the caseK50 butAÞ0. We have

z~p!5
1

2A1/3E
0

A1/3p
e2q3/3dq, A52.136 22. ~14!

Note that Eq.~14! is the K→0 limit of Eq. ~12! and re-
sembles the temperature profile obtained by Shraiman
Siggia @8#. Moreover,

g0L
2

k
;16ANu3, ~15!

which agrees with the prediction@Eq. ~4!# of Ref. @8#.
Finally, for A50 butKÞ0,

z~p!5
1

2K
arctan~Kp!, ~16!

with K5p/2 and

g0L
2

k
;8BNu2, ~17!

which implies that the shear rate scales like Nu2 if the con-
stantB does not depend on Ra.

Hence the relation between the shear rate and the hea
depends crucially on the normalized temperature pro
z(p). In Fig. 1 we plotz(p) for the three cases:~i! K'A
'1, ~ii ! K50 and A52.136 22, and ~iii ! A50 and
K5p/2. The profile forA50 is much broader than the pro
files reported in the literature@12,15#, implying that the rela-
tion between the shear rate and the heat flux would no
given by Eq.~17!.

The observation ofg0L
2/k;Nu3 in two-dimensional nu-

merical simulations@15# suggests that the normalized tem
perature profiles correspond toK'0. This is supported by a
good resemblance of Fig. 1 and Fig. 15~d! in Ref. @15# and
by a direct estimate of the slope ofl(x) for 0,x,L/2 from
Fig. 16~d! in @15#. On the other hand, Fig. 3 in Ref.@12#
shows two experimental normalized temperature profiles
t,

le
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e
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Ra.108 that coincide with each other. A comparison of th
common profile with Fig. 1 suggests that it corresponds
KÞ0 andAÞ0. If the normalized temperature profile doe
remain the same over a substantial range of Ra, we have
~13! with A(K)/K being constant over the same range. Sin
Nu;Ra2/7, this impliesg0L

2/k;Ra4/7lnRa. If a straight line
is fitted to a log-log plot ofg0L

2/k versus Ra, the slope
obtained will depend on the range of Ra. An example of su
a plot for 108,Ra,1010 ~the range of Ra covered in th
experiment in Ref.@13#! is shown in Fig. 2. The exponent s
obtained is 0.62, which is in better agreement with the
perimental result of 0.6660.01 @13#. It is thus interesting to
check whether the normalized temperature profile rema
the same over the range of Ra covered and whether the
file corresponds toKÞ0 andAÞ0.

I have presented an analysis of the interaction of the th
mal and velocity boundary layers for the general case
nonuniform shear. The relation between the heat flux a
shear rate depends on the shape of the temperature pr
However, the same 2/7 Nu scaling has been observed
spective of whether the shear rate scales like Nu3 @15# or not
@13#. This implies that the cause of the nonclassical scal

FIG. 1. Normalized temperature profilez(p) for the three
different cases:~i! K51.005 87 andA51.017 71, ~ii ! K50
A52.136 22, and~iii ! A50 K5p/2.

FIG. 2. Plot of g0L
2/k versus Ra using Eq.~13! with Nu

;Ra2/7 andA(K)/K taken to be constant. A good straight line ca
be fitted in the log-log plot and the slope obtained is 0.62, wh
agrees better with Eq.~5!. C is an arbitrary constant.
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of Nu is more general than that given in Ref.@8# and a full
understanding remains to be obtained.
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